Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1128822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824688

RESUMO

Introduction: As we approach the post-antibiotic era, the development of innovative antimicrobial strategies that carry out their activities through non-specific mechanisms could limit the onset and spread of drug resistance. In this context, the use of nanogranular coatings of multielement nanoparticles (NPs) conjugated to the surface of implantable biomaterials might represent a strategy to reduce the systemic drawbacks by locally confining the NPs effects against either prokaryotic or eukaryotic cells. Methods: In the present study, two new multielement nanogranular coatings combining Ag and Cu with either Ti or Mg were synthesized by a gas phase physical method and tested against pathogens isolated from periprosthetic joint infections to address their potential antimicrobial value and toxicity in an in vitro experimental setting. Results: Overall, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli displayed a significantly decreased adhesion when cultured on Ti-Ag-Cu and Mg-Ag-Cu coatings compared to uncoated controls, regardless of their antibiotic resistance traits. A dissimilar behavior was observed when Pseudomonas aeruginosa was cultured for 30 and 120 minutes upon the surface of Ti-Ag-Cu and Mg-Ag-Cu-coated discs. Biofilm formation was mainly reduced by the active effect of Mg-Ag-Cu compared to Ti-Ag-Cu and, again, coatings had a milder effect on P. aeruginosa, probably due to its exceptional capability of attachment and matrix production. These data were further confirmed by the evaluation of bacterial colonization on nanoparticle-coated discs through confocal microscopy. Finally, to exclude any cytotoxic effects on eukaryotic cells, the biocompatibility of NPs-coated discs was studied. Results demonstrated a viability of 95.8% and 89.4% of cells cultured in the presence of Ti-Ag-Cu and Mg-Ag-Cu discs, respectively, when compared to negative controls. Conclusion: In conclusion, the present study demonstrated the promising anti-adhesive features of both Ti-Ag-Cu and Mg-Ag-Cu coatings, as well as their action in hampering the biofilm formation, highlighting the safe use of the tested multi-element families of nanoparticles as new strategies against bacterial attachment to the surface of biomedical implants.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Staphylococcus aureus , Complicações Pós-Operatórias
2.
Diagnostics (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36832229

RESUMO

The analysis of synovial fluid is a crucial step in the diagnosis of prosthetic joint infections (PJIs). Recently several studies illustrated the efficacy of synovial calprotectin in supporting the diagnosis of PJI. In this study, synovial calprotectin was analyzed by a commercial stool test to explore whether it might accurately predict PJIs. The synovial fluids of 55 patients were analyzed and calprotectin levels were compared to other synovial biomarkers of PJI. Of the 55 synovial flu-ids, 12 patients were diagnosed with PJI and 43 with an aseptic failure of the implant. Specificity, sensitivity, and AUC of calprotectin resulted in 0.944, 0.80, and 0.852 (95%CI: 0.971-1.00), respectively, with a set threshold of 529.5 µg/g. Calprotectin had a statistically relevant correlation with the synovial leucocyte counts (rs = 0.69, p < 0.001) and the percentage of synovial neutrophils (rs = 0.61, p < 0.001). From this analysis, it can be concluded that synovial calprotectin is a valuable biomarker that correlates with other established indicators of local infection, and the use of a commercial lateral flow stool test could be a cost-effective strategy delivering rapid and reliable results and supporting the diagnostic process of PJI.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144970

RESUMO

The development of innovative osteoconductive matrices, which are enriched with antibiotic delivery nanosystems, has the invaluable potential to achieve both local contaminant eradication and the osseointegration of implanted devices. With the aim of producing safe, bioactive materials that have osteoconductive and antibacterial properties, novel, antibiotic-loaded, functionalized nanoparticles (AFN)-based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that can be integrated into peptide-enriched silk fibroin (PSF) matrices with osteoconductive properties-were successfully synthesized. The obtained AFNPSF sponges were first physico-chemically characterized and then tested in vitro against eukaryotic cells and bacteria involved in orthopedic or oral infections. The biocompatibility and microbiological tests confirmed the promising characteristics of the AFN-PSF products for both orthopedic and dental applications. These preliminary results encourage the establishment of AFN-PSF-based preventative strategies in the fight against implant-related infections.

4.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336102

RESUMO

Understanding how bacteria adapt their social behavior to environmental changes is of crucial importance from both biological and clinical perspectives. Staphylococcus aureus is among the most common infecting agents in orthopedics, but its recalcitrance to the immune system and to antimicrobial treatments in the physiological microenvironment are still poorly understood. By means of optical and confocal microscopy, image pattern analysis, and mathematical modeling, we show that planktonic biofilm-like aggregates and sessile biofilm lifestyles are two co-existing and interacting phases of the same environmentally adaptive developmental process and that they exhibit substantial differences when S. aureus is grown in physiological fluids instead of common lab media. Physicochemical properties of the physiological microenvironment are proposed to be the key determinants of these differences. Besides providing a new tool for biofilm phenotypic analysis, our results suggest new insights into the social behavior of S. aureus in physiological conditions and highlight the inadequacy of commonly used lab media for both biological and clinical studies of bacterial development.

5.
Front Cell Infect Microbiol ; 12: 1056912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683682

RESUMO

Introduction: Implant-related infections and infected fractures are significant burdens in orthopedics. Staphylococcus epidermidis is one of the main causes of bone infections related to biofilm formation upon implants. Current antibiotic prophylaxis/therapy is often inadequate to prevent biofilm formation and results in antibiotic resistance. The development of bioactive materials combining antimicrobial and osteoconductive properties offers great potential for the eradication of microorganisms and for the enhancement of bone deposition in the presence of infections. The purpose of this study is to prevent the development of methicillin-resistant S. epidermidis (MRSE)-infected nonunion in a rat model. Methods: To this end, a recently developed in our laboratories bioactive material consisting of antibiotic-loaded nanoparticles based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that are integrated into peptide-enriched silk fibroin sponges with osteoconductive properties (AFN-PSF) was employed, whose biocompatibility and microbiological tests provided proof of its potential for the treatment of both orthopedic and dental infections. In particular, non-critical femoral fractures fixed with plates and screws were performed in Wistar rats, which were then randomly divided into three groups: 1) the sham control (no infection, no treatment); 2) the control group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating non-drug-loaded functionalized nanoparticles (PSF); 3) the treated group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating vancomycin-loaded functionalized nanoparticles (AFN-PSF). After 8 weeks, bone healing and osteomyelitis were clinically assessed and evaluated by micro-CT, microbiological and histological analyses. Results: The sham group showed no signs of infection and complete bone healing. The PSF group failed to repair the infected fracture, displaying 75% of altered bone healing and severe signs of osteomyelitis. The AFN-PSF treated group reached 70% of fracture healing in the absence of signs of osteomyelitis, such as abscesses in the cortical and intraosseous compartments and bone necrosis with sequestra. Discussion: AFN-PSF sponges have proven effective in preventing the development of infected nonunion in vivo. The proposed nanotechnology for local administration of antibiotics can have a significant impact on patient health in the case of orthopedic infections.


Assuntos
Fibroínas , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Ratos , Animais , Vancomicina/farmacologia , Staphylococcus epidermidis , Fibroínas/farmacologia , Resistência a Meticilina , Ratos Wistar , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Osteomielite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia
6.
BMC Infect Dis ; 21(1): 416, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947342

RESUMO

BACKGROUND: Prosthetic joint infection (PJI) is one of the most feared complications following total arthroplasty surgeries. Gram-positive bacteria are the most common microorganisms implicated in PJIs, while infections mediated by fungi only account for 1% of cases. When dealing with PJIs, a two-stage revision arthroplasty is widely used. Briefly, a spacer is introduced until re-implantation of the definitive prosthesis to provide skeleton stabilization while delivering antibiotics in the site of the infection. Sometimes, antimicrobial therapy may fail, but the isolation of a second microorganism from the spacer is uncommon and even less frequent that of a yeast. CASE PRESENTATION: Here is described a case of a 75-year-old woman who underwent two-stage revision surgery of the left hip prosthesis secondary to a Staphylococcus capitis infection, whose spacer was found to be infected by Candida albicans at a later time. Briefly, the patient underwent revision surgery of the hip prosthesis for a suspected PJI. After the debridement of the infected tissue, an antibiotic-loaded spacer was implanted. The microbiological analysis of the periprosthetic tissues and the implant depicted a S. capitis infection that was treated according to the antimicrobial susceptibility profile of the clinical isolate. Three months later, the patient was admitted to the emergency room due to local inflammatory signs. Synovial fluid was sent to the laboratory for culture. No evidence of S. capitis was detected, however, a yeast was identified as Candida albicans. Fifteen days later, the patient was hospitalized for the removal of the infected spacer. Microbiological cultures confirmed the results of the synovial fluid analysis. According to the susceptibility profile, the patient was treated with fluconazole (400 mg/day) for 6 months. Seven months later, the patient underwent second-stage surgery. The microbiological tests on the spacer were all negative. After 12 months of follow-up, the patient has fully recovered and no radiological signs of infection have been detected. CONCLUSIONS: Given the exceptionality of this complication, it is important to report these events to better understand the clinical outcomes after the selected therapeutic options to prevent and forestall the development of either bacterial or fungal spacer infections.


Assuntos
Candidíase/cirurgia , Prótese de Quadril/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/cirurgia , Infecções Estafilocócicas/cirurgia , Idoso , Antibacterianos/uso terapêutico , Artroplastia de Quadril , Candida albicans/isolamento & purificação , Candidíase/microbiologia , Feminino , Humanos , Reoperação , Infecções Estafilocócicas/microbiologia , Staphylococcus capitis/patogenicidade
7.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291550

RESUMO

Antibiotic-loaded bone graft substitutes are attractive clinical options and have been used for years either for prophylaxis or therapy for periprosthetic and fracture-related infections. Calcium sulfate and hydroxyapatite can be combined in an injectable and moldable bone graft substitute that provides dead space management with local release of high concentrations of antibiotics in a one-stage approach. With the aim to test preventive strategies against bone infections, a commercial hydroxyapatite/calcium sulfate bone graft substitute containing either gentamicin or vancomycin was tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa, harboring different resistance determinants. The prevention of bacterial colonization and biofilm development by selected microorganisms was investigated along with the capability of the eluted antibiotics to select for antibiotic resistance. The addition of antibiotics drastically affected the ability of the selected strains to adhere to the tested compound. Furthermore, both the antibiotics eluted by the bone graft substitutes were able to negatively impair the biofilm maturation of all the staphylococcal strains. As expected, P. aeruginosa was significantly affected only by the gentamicin containing bone graft substitutes. Finally, the prolonged exposure to antibiotic-containing sulfate/hydroxyapatite discs did not lead to any stable or transient adaptations in either of the tested bacterial strains. No signs of the development of antibiotic resistance were found, which confirms the safety of this strategy for the prevention of infection in orthopedic surgery.


Assuntos
Antibioticoprofilaxia , Substitutos Ósseos , Gentamicinas/administração & dosagem , Infecções Relacionadas à Prótese/prevenção & controle , Vancomicina/administração & dosagem , Animais , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Substitutos Ósseos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Infecções Relacionadas à Prótese/etiologia , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/prevenção & controle
8.
Front Bioeng Biotechnol ; 8: 563203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195126

RESUMO

Osteoarthritis frequently requires arthroplasty. Cementless implants are widely used in clinics to replace damaged cartilage or missing bone tissue. In cementless arthroplasty, the risk of aseptic loosening strictly depends on implant stability and bone-implant interface, which are fundamental to guarantee the long-term success of the implant. Ameliorating the features of prosthetic materials, including their porosity and/or geometry, and identifying osteoconductive and/or osteoinductive coatings of implant surfaces are the main strategies to enhance the bone-implant contact surface area. Herein, the development of a novel composite consisting in the association of macro-porous trabecular titanium with silk fibroin (SF) sponges enriched with anionic fibroin-derived polypeptides is described. This composite is applied to improve early bone ingrowth into the implant mesh in a sheep model of bone defects. The composite enables to nucleate carbonated hydroxyapatite and accelerates the osteoblastic differentiation of resident cells, inducing an outward bone growth, a feature that can be particularly relevant when applying these implants in the case of poor osseointegration. Moreover, the osteoconductive properties of peptide-enriched SF sponges support an inward bone deposition from the native bone towards the implants. This technology can be exploited to improve the biological functionality of various prosthetic materials in terms of early bone fixation and prevention of aseptic loosening in prosthetic surgery.

9.
Bone Joint Res ; 9(9): 613-622, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33072305

RESUMO

AIMS: In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. METHODS: A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol. RESULTS: The daily exposure to PEMFs generally provided an improvement in the fibre organization, a decrease in cell density, vascularity, and fat deposition, and a restoration of the physiological cell morphology compared to untreated tendons. These improvements were more evident when the tendons were exposed to PEMFs during the mid-acute phase of the pathology (7 days after induction) rather than during the early (1 day after induction) or the late acute phase (15 days after induction). Moreover, the exposure to PEMFs for 14 days during the mid-acute phase was more effective than for 7 days. CONCLUSION: PEMFs exerted a positive role in the tendon healing process, thus representing a promising conservative treatment for tendinopathy, although further investigations regarding the clinical evaluation are needed.Cite this article: Bone Joint Res 2020;9(9):613-622.

10.
Front Microbiol ; 11: 565914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013797

RESUMO

One of the major causes of prosthetic joint failure is infection. Recently, coagulase negative Staphylococcus epidermidis has been identified as an emergent, nosocomial pathogen involved in subclinical prosthetic joint infections (PJIs). The diagnosis of PJIs mediated by S. epidermidis is usually complex and difficult due to the absence of acute clinical signs derived from the host immune system response. Therefore, analysis of protein patterns in biofilm-producing S. epidermidis allows for the examination of the molecular basis of biofilm formation. Thus, in the present study, the proteome of a clinical isolate S. epidermidis was analyzed when cultured in its planktonic or sessile form to examine protein expression changes depending on culture conditions. After 24 h of culture, sessile bacteria exhibited increased gene expression for ribosomal activity and for production of proteins related to the initial attachment phase, involved in the capsular polysaccharide/adhesin, surface associated proteins and peptidoglycan biosynthesis. Likewise, planktonic S. epidermidis was able to aggregate after 24 h, synthesizing the accumulation associate protein and cell-wall molecules through the activation of the YycFG and ArlRS, two component regulatory pathways. Prolonged culture under vigorous agitation generated a stressful growing environment triggering aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. Further studies will be essential to support these findings in order to further delineate the complex mechanisms of biofilm formation of S. epidermidis and they could provide the groundwork for the development of new drugs against biofilm-related infections, as well as the identification of novel biomarkers of subclinical or chronic infections mediated by these emerging, low virulence pathogens.

11.
Front Microbiol ; 11: 1368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714301

RESUMO

Recent in vitro studies reported the exceptional ability of some bacterial species to form biofilm-like aggregates in human and animal synovial fluids (SF), but evidences from infected clinical samples are still lacking. In this study, we investigated whether this bacterial phenotype was present in infected SFs collected from joint infections and if it was maintained in in vitro settings. SFs sent for culture to the Laboratory of Microbiology of our institute were directly analyzed by means of confocal laser scanning microscopy (CLSM), and the infective agents were isolated for further in vitro tests. Moreover, sterile SF was collected from patients who did not receive previous antibiotic therapy to investigate the formation of bacterial aggregates, together with biofilm and matrix production on a titanium surface. Finally, antibiotic susceptibility studies were performed by using bovine SF. Four Staphylococcus aureus, one Staphylococcus lugdunensis, and one Prevotella bivia strain were identified in the infected SFs. The CLSM analysis showed that all staphylococci were present as a mixture of single cells and bacterial clumps surrounded by an exopolymeric substance, which comprised SF-derived fibrin, while all P. bivia cells appeared separated. Despite that, differences in the ability to aggregate between S. aureus and S. lugdunensis were observed in clinical SFs. These different phenotypes were further confirmed by in vitro growth, even though the application of such ex vivo approach lead all staphylococci to form exceptionally large microbial aggregates, which are several folds bigger than those observed in clinical samples. Planktonic aggregates challenged for antibiotic susceptibility revealed a sharp increase of recalcitrance to the treatments. Although this is still at a preliminary stage, the present work confirmed the ability of staphylococci to form free-floating biofilm-like aggregates in infected SF from patients with joint infections. Furthermore, the obtained results pointed out that future in vitro research on joint infections will benefit from the use of human- or animal-derived SF. Even though this approach should be carefully validated in further studies comprising a larger microbial population, these findings pose new challenges in the treatment of infected native and prosthetic joints and for the approach to new investigations.

12.
J Orthop Surg Res ; 15(1): 90, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131862

RESUMO

BACKGROUND: Orthopedic metal implants are notoriously associated with release of metallic ions able to cause biological adverse reactions which might lead to implant loosening and failure. To limit any possible adverse reactions, ceramic coatings for orthopedic metal implants have been introduced. However, information regarding the interaction of these coatings with microbes responsible for periprosthetic joint infections (PJIs) is lacking. Hence, the aim of the present in vitro study is to assess the microbial affinity to a titanium-niobium nitride (TiNbN) coating. METHODS: Adhesion and biofilm formation of clinical isolates of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Cutibacterium acnes were assessed on TiNbN-coated titanium discs in comparison with uncoated titanium and cobalt-chrome alloys discs, with either smooth or rough surfaces. Bacterial adhesion was performed by counting adhered bacteria in the first hours of incubation, and the biofilm formation was performed by means of a spectrophotometric assay and by confocal laser scan microscopy after 72 hours of incubation. RESULTS: Overall, Staphylococcus aureus and Staphylococcus epidermidis, among the most common bacteria responsible for PJIs, displayed a significantly decreased attachment in the first hours of contact and, when cultured in presence of TiNbN coating, in comparison with CoCrMo. Biofilm formation of the four tested strains was comparable on all alloys. CONCLUSIONS: Although the onset of a PJI is more complex than in an in vitro scenario, these findings suggest that TiNbN-coated orthopedic implants do not increase PJIs risk while ameliorating tribological and surface properties could represent a valid choice to limit possible complications such as metal hypersensitivity.


Assuntos
Ligas/administração & dosagem , Aderência Bacteriana/fisiologia , Materiais Biocompatíveis/administração & dosagem , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas à Prótese/patologia , Infecções Estafilocócicas/patologia , Cerâmica/uso terapêutico , Humanos , Microscopia Confocal/métodos , Propionibacteriaceae/crescimento & desenvolvimento , Propionibacteriaceae/isolamento & purificação , Infecções Relacionadas à Prótese/prevenção & controle , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação
13.
Front Microbiol ; 10: 1909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551940

RESUMO

Prosthetic joint replacement failure has a huge impact on quality of life and hospitalization costs. A leading cause of prosthetic joint infection is bacteria-forming biofilm on the surface of orthopedic devices. Staphylococcus epidermidis is an emergent, low-virulence pathogen implicated in chronic infections, barely indistinguishable from aseptic loosening when embedded in a mature matrix. The literature on the behavior of quiescent S. epidermidis in mature biofilms is scarce. To fill this gap, we performed comparative analysis of the whole proteomic profiles of two methicillin-resistant S. epidermidis strains growing in planktonic and in sessile form to investigate the molecular mechanisms underlying biofilm stability. After 72-h culture of biofilm-forming S. epidermidis, overexpression of proteins involved in the synthesis of nucleoside triphosphate and polysaccharides was observed, whereas planktonic bacteria expressed proteins linked to stress and anaerobic growth. Cytological analysis was performed to determine why planktonic bacteria unexpectedly expressed proteins typical of sessile culture. Images evidenced that prolonged culture under vigorous agitation can create a stressful growing environment that triggers microorganism aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. The choice of a unique late time point provided an important clue for future investigations into the biofilm-like behavior of planktonic cells. Our preliminary results may inform comparative proteomic strategies in the study of mature bacterial biofilm. Finally, there is an increasing number of studies on the aggregation of free-floating bacteria embedded in an extracellular matrix, prompting the need to gain further insight into this mode of bacterial growth.

14.
Stem Cells Int ; 2019: 5267479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31558905

RESUMO

Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Among several biomaterials, decellularized xenografts are available in large quantity and could represent a possible solution for tendon reconstruction. The present study is aimed at evaluating TE xenografts in Achilles tendon defects. Specifically, the ability to enhance the biomechanical functionality, while improving the graft interaction with the host, was tested. The combination of decellularized equine-derived tendon xenografts with or without the matrix repopulation with autologous bone marrow mesenchymal stem cells (BMSCs) under stretch-perfusion dynamic conditions might improve the side-to-side tendon reconstruction. Thirty-six New Zealand rabbits were used to create 2 cm long segmental defects of the Achilles tendon. Then, animals were implanted with autograft (AG) as the gold standard control, decellularized graft (DG), or in vitro tissue-engineered graft (TEG) and evaluated postoperatively at 12 weeks. After sacrifice, histological, immunohistochemical, biochemical, and biomechanical analyses were performed along with the matrix metalloproteinases. The results demonstrated the beneficial role of undifferentiated BMSCs loaded within decellularized xenografts undergoing a stretch-perfusion culture as an immunomodulatory weapon reducing the inflammatory process. Interestingly, AG and TEG groups exhibited similar results, behaved similarly, and showed a significant superior tissue healing compared to DG in terms of newly formed collagen fibres and biomechanical parameters. Whereas, DG demonstrated a massive inflammatory and giant cell response associated with graft destruction and necrosis, absence of type I and III collagen, and a higher amount of proteoglycans and MMP-2, thus unfavourably affecting the biomechanical response. In conclusion, this in vivo study suggests a potential use of the proposed tissue-engineered constructs for tendon reconstruction.

15.
Infect Drug Resist ; 12: 2177-2189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410037

RESUMO

PURPOSE: Persistence of skin and wound infections is nowadays accepted being linked to bacterial biofilms, which are highly recalcitrant to treatments and contribute to maintain a constant inflammation state and prevent a correct healing. Topical antimicrobials are the most common first-line self-medications; however, treatment failure is not uncommon and emerging resistance to antibiotics is alarming. Chlorquinaldol is an antimicrobial with a wide spectrum of activity and desirable characteristics for topical application. Aim of this study was to evaluate the efficacy of chlorquinaldol to prevent or eradicate S. aureus and P. aeruginosa biofilms, in comparison to classic topical antibiotics like gentamicin and fusidic acid. METHODS: Minimum inhibitory concentrations (MIC) were assessed for each strain and subinhibitory concentrations (½ and » MIC) were used in the biofilm assay. Antimicrobial assays were performed during biofilm formation or were applied on mature biofilms and were evaluated by means of crystal violet assay and confocal laser scan microscopy. RESULTS: Chlorquinaldol and gentamicin were the most effective antimicrobials in both eradicating and preventing pathogens biofilm; however, resistance to methicillin and impermeability to carbapenems impaired chlorquinaldol effect. In addition, similarly to other hydroxyquinolines, aspecific metal chelation is here proposed as chlorquinaldol mode of action. CONCLUSION: Relying on an acceptable antibiofilm and a wide spectrum of activity, an aspecific mode of action and consequent absence of resistance development, chlorquinaldol proved to be a good antimicrobial for topical use.

16.
Clin Cosmet Investig Dermatol ; 12: 285-293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190937

RESUMO

Objective: A new cream formulation containing hyaluronic acid 5%, complexed with a mix of a bacterial-wall-derived glycoprotein and peptide glycan complex (EDS), has been recently developed. We evaluated in a prospective, assessor-blinded, 6-week study the efficacy and tolerability of EDS in the treatment of facial seborrheic dermatitis (SD) and the effects on skin microbiota. Subjects and methods: Seventy-five subjects (mean age 46; 60 men) with moderate-severe SD of the face were enrolled. EDS cream was applied twice daily. The primary outcome was the evolution of the Investigator Global Assessment (IGA) score, evaluating erythema, scale/flaking, grade of seborrhea and itch. Superficial skin bacterial microbiome at baseline and after treatment was assessed, using the 16S rRNA gene methodology, in affected and non-affected face areas. Local tolerability was evaluated checking self-reported side effects at each visit. Results: Baseline IGA scores (mean±SD) was 10±3. The use of EDS reduced IGA score significantly by 70% at week 3 and by 88% at week 6. An increase in the abundance of Cutibacterium acnes genera associated with a significant drop of Staphylococcus genera presence was detected in affected areas. The ratio of relative abundance of genera Cutibacterium/Staphylococcus increased significantly after treatment in affected areas. The product was very well tolerated. Conclusion: Treatment with EDS applied twice daily for 6 consecutive weeks was associated with a reduction of the signs and symptoms of SD. Furthermore, after EDS cream treatment, a reequilibrating effect on facial skin microbiota was observed. The product was very well tolerated.

17.
J Med Microbiol ; 68(4): 506-537, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30875284

RESUMO

The development of infections is one of the main complications in orthopaedics, especially in the presence of implants for the osteosynthesis of compound fractures and joint prosthesis. Indeed, foreign materials and implants act as substrates for the adhesion and proliferation of bacterial strains able to produce biofilm, causing peri-implant osteomyelitis. The eradication of biofilm remains a great challenge for the host immune system, as well as for medical and surgical approaches, thus imposing the need for new prophylactic and/or therapeutic strategies in which animal models have an essential role. In vivo orthopaedic models have mainly been used to study the pathogenesis of infections, biofilm behaviour and the efficacy of antimicrobial strategies, to select diagnostic techniques and test the efficacy of novel materials or surface modifications to impede both the establishment of bone infections and the associated septic loosening of implants. Among several models of osteomyelitis and implant-related infections described in small rodents and large animals, the rabbit has been widely used as a reliable and reproducible model of orthopaedic infections. This review examines the relevance of rabbits for the development of clinically representative models by analysing the pros and cons of the different approaches published in the literature. This analysis will aid in increasing our knowledge concerning orthopaedic infections by using this species. This review will be a tool for researchers who need to approach pre-clinical studies in the field of bone infection and have to identify the most appropriate animal model to verify their scientific hypothesis.


Assuntos
Osso e Ossos/microbiologia , Modelos Animais de Doenças , Osteomielite/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Animais , Antibacterianos/uso terapêutico , Biofilmes , Humanos , Ortopedia/métodos , Osteomielite/tratamento farmacológico , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/tratamento farmacológico , Coelhos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
18.
Materials (Basel) ; 12(2)2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669523

RESUMO

The increase of multidrug-resistant bacteria remains a global concern. Among the proposed strategies, the use of nanoparticles (NPs) alone or associated with orthopedic implants represents a promising solution. NPs are well-known for their antimicrobial effects, induced by their size, shape, charge, concentration and reactive oxygen species (ROS) generation. However, this non-specific cytotoxic potential is a powerful weapon effective against almost all microorganisms, but also against eukaryotic cells, raising concerns related to their safe use. Among the analyzed transition metals, silver is the most investigated element due to its antimicrobial properties per se or as NPs; however, its toxicity raises questions about its biosafety. Even though it has milder antimicrobial and cytotoxic activity, TiO2 needs to be exposed to UV light to be activated, thus limiting its use conjugated to orthopedic devices. By contrast, gold has a good balance between antimicrobial activity as an NP and cytocompatibility because of its inability to generate ROS. Nevertheless, although the toxicity and persistence of NPs within filter organs are not well verified, nowadays, several basic research on NP development and potential uses as antimicrobial weapons is reported, overemphasizing NPs potentialities, but without any existing potential of translation in clinics. This analysis cautions readers with respect to regulation in advancing the development and use of NPs. Hopefully, future works in vivo and clinical trials will support and regulate the use of nano-coatings to guarantee safer use of this promising approach against antibiotic-resistant microorganisms.

19.
Probiotics Antimicrob Proteins ; 11(4): 1219-1226, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30535674

RESUMO

Changes in bacterial composition of nasal microbiota may alter the host's susceptibility to several infectious and allergic diseases such as chronic rhinosinusitis and allergic rhinitis. The aim of this study was to evaluate the effects of 1-week administration of a probiotic product, composed by a combination of Streptococcus salivarius 24SMBc and Streptococcus oralis 89a, on the nostril microbiota. Differences in the nasal microbiota composition were investigated by using a next-generation sequencing approach. A strong and significant decrease in Staphylococcus aureus abundance was detected immediately after the bacterial administration. Moreover, comparing the microbial networks of nostril microbiota before and 1 month after the end of treatment, we detected an increase in the total number of both bacterial nodes and microbial correlations, with particular regard to the beneficial ones. Furthermore, a less abundance of microbial genera commonly associated to potential harmful bacteria has been observed. These results suggest a potential ability of S. salivarius 24SMBc and S. oralis 89a to regulate and reorganize the nasal microbiota composition, possibly favoring those microorganisms that may be able to limit the overgrowth of potential pathogens.


Assuntos
Microbiota , Nariz/microbiologia , Streptococcus oralis/fisiologia , Streptococcus salivarius/fisiologia , Administração Intranasal , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Humanos , Masculino , Probióticos/administração & dosagem , Streptococcus oralis/crescimento & desenvolvimento , Streptococcus salivarius/crescimento & desenvolvimento
20.
Microbes Infect ; 21(2): 109-112, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30385304

RESUMO

Sialolithiasis represents the most common disorders of salivary glands in middle-aged patients. It has been hypothesized that the retrograde migration of bacteria from the oral cavity to gland ducts may facilitate the formation of stones. Thus, in the present study, a microbiome characterization of salivary calculi was performed to evaluate the abundance and the potential correlations between microorganisms constituting the salivary calculi microbiota. Our data supported the presence of a core microbiota of sialoliths constituted principally by Streptococcus spp., Fusobacterium spp. and Eikenella spp., along with the presence of important pathogens commonly involved in infective sialoadenitis.


Assuntos
Biofilmes , Eikenella/fisiologia , Fusobacterium/fisiologia , Microbiota/fisiologia , Cálculos Salivares/microbiologia , Sialadenite/microbiologia , Streptococcus/fisiologia , Idoso , Eikenella/isolamento & purificação , Feminino , Fusobacterium/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Cálculos das Glândulas Salivares/microbiologia , Streptococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...